Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Ecol Resour ; : e13952, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523350

RESUMO

Tools for visualizing genomes are essential for investigating genomic features and their interactions. Currently, tools designed originally for animal mitogenomes and plant plastomes are used to visualize the mitogens of plants but cannot accurately display features specific to plant mitogenomes, such as nonlinear exon arrangement for genes, the prevalence of functional noncoding features and complex chromosomal architecture. To address these problems, a software package, plant mitochondrial genome map (PMGmap), was developed using the Python programming language. PMGmap can draw genes at exon levels; draw cis- and trans-splicing gene maps, noncoding features and repetitive sequences; and scale genic regions by using the scaling of the genic regions on the mitogenome (SAGM) algorithm. It can also draw multiple chromosomes simultaneously. Compared with other state-of-the-art tools, PMGmap showed better performance in visualizing 405 plant mitogenomes, showing potential as an invaluable tool for plant mitogenome research. The web and container versions and the source code of PMGmap can be accessed through the following link: http://www.1kmpg.cn/pmgmap.

2.
Mol Ecol Resour ; 23(3): 694-704, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587992

RESUMO

Chloroplast genomes have been widely used in studying plant phylogeny and evolution. Several chloroplast genome visualization tools have been developed to display the distribution of genes on the genome. However, these tools do not draw features, such as exons, introns, repetitive elements, and variable sites, disallowing in-depth examination of the genome structures. Here, we developed and validated a software package called Chloroplast Genome Viewers (CPGView). CPGView can draw three maps showing (i) the distributions of genes, variable sites, and repetitive sequences, including microsatellites, tandem and dispersed repeats; (ii) the structure of the cis-splicing genes after adjusting the exon-intron boundary positions using a coordinate scaling algorithm, and (iii) the structure of the trans-splicing gene rps12. To test the accuracy of CPGView, we sequenced, assembled, and annotated 31 chloroplast genomes from 31 genera of 22 families. CPGView drew maps correctly for all the 31 chloroplast genomes. Lastly, we used CPGView to examine 5998 publicly released chloroplast genomes from 2513 genera of 553 families. CPGView succeeded in plotting maps for 5882 but failed to plot maps for 116 chloroplast genomes. Further examination showed that the annotations of these 116 genomes had various errors needing manual correction. The test on newly generated data and publicly available data demonstrated the ability of CPGView to identify errors in the annotations of chloroplast genomes. CPGView will become a widely used tool to study the detailed structure of chloroplast genomes. The web version of CPGView can be accessed from http://www.1kmpg.cn/cpgview.


Assuntos
Genoma de Cloroplastos , Humanos , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Éxons , Filogenia , Cloroplastos/genética , Evolução Molecular
3.
Genes (Basel) ; 13(5)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627126

RESUMO

Chimeric RNAs are transcripts that are generated by gene fusion and intergenic splicing events, thus comprising nucleotide sequences from different parental genes. In the past, Northern blot analysis and RT-PCR were used to detect chimeric RNAs. However, they are low-throughput and can be time-consuming, labor-intensive, and cost-prohibitive. With the development of RNA-seq and transcriptome analyses over the past decade, the number of chimeric RNAs in cancer as well as in rare inherited diseases has dramatically increased. Chimeric RNAs may be potential diagnostic biomarkers when they are specifically expressed in cancerous cells and/or tissues. Some chimeric RNAs can also play a role in cell proliferation and cancer development, acting as tools for cancer prognosis, and revealing new insights into the cell origin of tumors. Due to their abilities to characterize a whole transcriptome with a high sequencing depth and intergenically identify spliced chimeric RNAs produced with the absence of chromosomal rearrangement, RNA sequencing has not only enhanced our ability to diagnose genetic diseases, but also provided us with a deeper understanding of these diseases. Here, we reviewed the mechanisms of chimeric RNA formation and the utility of RNA sequencing for discovering chimeric RNAs in several types of cancer and rare inherited diseases. We also discussed the diagnostic, prognostic, and therapeutic values of chimeric RNAs.


Assuntos
Neoplasias , Doenças Raras , Sequência de Bases , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , RNA/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
4.
Rice (N Y) ; 14(1): 29, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689034

RESUMO

BACKGROUND: The sequences of several important mitochondrion-encoded genes involved in respiration in higher plants are interrupted by introns. Many nuclear-encoded factors are involved in splicing these introns, but the mechanisms underlying this splicing remain unknown. RESULTS: We isolated and characterized a rice mutant named floury shrunken endosperm 5 (fse5). In addition to having floury shrunken endosperm, the fse5 seeds either failed to germinate or produced seedlings which grew slowly and died ultimately. Fse5 encodes a putative plant organelle RNA recognition (PORR) protein targeted to mitochondria. Mutation of Fse5 hindered the splicing of the first intron of nad4, which encodes an essential subunit of mitochondrial NADH dehydrogenase complex I. The assembly and NADH dehydrogenase activity of complex I were subsequently disrupted by this mutation, and the structure of the mitochondria was abnormal in the fse5 mutant. The FSE5 protein was shown to interact with mitochondrial intron splicing factor 68 (MISF68), which is also a splicing factor for nad4 intron 1 identified previously via yeast two-hybrid (Y2H) assays. CONCLUSION: Fse5 which encodes a PORR domain-containing protein, is essential for the splicing of nad4 intron 1, and loss of Fse5 function affects seed development and seedling growth.

5.
Noncoding RNA ; 7(1)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557176

RESUMO

Fusion RNAs are a hallmark of some cancers. They result either from chromosomal rearrangements or from splicing mechanisms that are non-chromosomal rearrangements. Chromosomal rearrangements that result in gene fusions are particularly prevalent in sarcomas and hematopoietic malignancies; they are also common in solid tumors. The splicing process can also give rise to more complex RNA patterns in cells. Gene fusions frequently affect tyrosine kinases, chromatin regulators, or transcription factors, and can cause constitutive activation, enhancement of downstream signaling, and tumor development, as major drivers of oncogenesis. In addition, some fusion RNAs have been shown to function as noncoding RNAs and to affect cancer progression. Fusion genes and RNAs will therefore become increasingly important as diagnostic and therapeutic targets for cancer development. Here, we discuss the function, biogenesis, detection, clinical relevance, and therapeutic implications of oncogenic fusion genes and RNAs in cancer development. Further understanding the molecular mechanisms that regulate how fusion RNAs form in cancers is critical to the development of therapeutic strategies against tumorigenesis.

6.
Adv Clin Chem ; 100: 1-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453863

RESUMO

Chimeric RNAs are hybrid transcripts containing exons from two separate genes. Chimeric RNAs are traditionally considered to be transcribed from fusion genes caused by chromosomal rearrangement. These canonical chimeric RNAs are well characterized to be expressed in a cancer-unique pattern and/or act as oncogene products. However, benefited by the development of advanced deep sequencing technologies, novel types of non-canonical chimeric RNAs have been discovered to be generated from intergenic splicing without genomic aberrations. They can be formed through trans-splicing or cis-splicing between adjacent genes (cis-SAGe) mechanisms. Non-canonical chimeric RNAs are widely detected in normal physiology, although several have been shown to have a cancer-specific expression pattern. Further studies have indicated that some of them play fundamental roles in controlling cell growth and motility, and may have functions independent of the parental genes. These discoveries are unveiling a new layer of the functional transcriptome and are also raising the possibility of utilizing non-canonical chimeric RNAs as cancer diagnostic markers and therapeutic targets. In this chapter, we will overview different categories of chimeric RNAs and their expression in various types of cancerous and normal samples. Acknowledging that chimeric RNAs are not unique to cancer, we will discuss both bioinformatic and biological methods to identify credible cancer-specific chimeric RNAs. Furthermore, we will describe downstream methods to explore their molecular processing mechanisms and potential functions. A better understanding of the biogenesis mechanisms and functional products of cancer-specific chimeric RNAs will pave ways for the development of novel cancer biomarkers and therapeutic targets.


Assuntos
Neoplasias , RNA , Animais , Biologia Computacional , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA/genética , RNA/metabolismo
7.
Mol Biol Evol ; 37(6): 1615-1620, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027368

RESUMO

Hundreds of plant mitogenomes have been sequenced from angiosperms, but relatively few mitogenomes are available from its sister lineage, gymnosperms. To examine mitogenomic diversity among extant gymnosperms, we generated draft mitogenomes from 11 diverse species and compared them with four previously published mitogenomes. Examined mitogenomes from Pinaceae and cycads retained all 41 protein genes and 26 introns present in the common ancestor of seed plants, whereas gnetophyte and cupressophyte mitogenomes experienced extensive gene and intron loss. In Pinaceae and cupressophyte mitogenomes, an unprecedented number of exons are distantly dispersed, requiring trans-splicing of 50-70% of mitochondrial introns to generate mature transcripts. RNAseq data confirm trans-splicing of these dispersed exons in Pinus. The prevalence of trans-splicing in vascular plant lineages with recombinogenic mitogenomes suggests that genomic rearrangement is the primary cause of shifts from cis- to trans-splicing in plant mitochondria.


Assuntos
Cycadopsida/genética , Genoma Mitocondrial , Íntrons , Pinales/genética , Trans-Splicing , Genoma de Planta
8.
Methods Mol Biol ; 2079: 233-241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728975

RESUMO

Chimeric RNAs and their products have been shown to be closely associated with tumorigenicity and development in a variety of tumors, making them attractive diagnostic markers and therapeutic targets. In previous chapters, we introduced related research techniques and methods for studying chimeric RNAs. Here, we present an overview of the landscape of chimeric RNAs in bladder cancer and verification of two fusion transcripts which are associated with bladder cancer. We used bioinformatics to analyze the TCGA bladder urothelial carcinoma RNA-sequencing dataset, which contains 414 bladder cancer samples and 19 matched normal samples. We identified 19,547 chimeric RNAs and applied multiple criteria to avoid false positives, reducing this list to 271 high-confidence chimeric RNAs, 13 of which specifically expressed in cancer. We validated 6 of these chimeric in clinical bladder cancer samples, including CHFR-GOLGA3, which was found to be expressed significantly higher in bladder cancer samples in comparison to matched normal samples. We have determined that this chimeric RNA is produced by cis-splicing between adjacent genes (cis-SAGe). Further, we found that CHFR-GOLGA3 is mainly expressed in the nucleus, suggesting that it may not encode chimeric protein and instead act as noncoding RNA. Our findings establish the chimeric landscape of bladder cancer and provide a research strategy for how to conduct chimeric RNA research in other tumors.


Assuntos
Fusão Gênica , RNA Neoplásico/genética , Neoplasias da Bexiga Urinária/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Splicing de RNA , RNA Longo não Codificante , Recidiva , Neoplasias da Bexiga Urinária/patologia
9.
Methods Mol Biol ; 2079: 243-258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728976

RESUMO

Traditional gene fusions are involved in the development of various neoplasias. DUS4L-BCAP29, a chimeric fusion RNA, has been reported to be a cancer-related fusion in prostate and gastric cancers. This chimeric RNA is believed to play a tumorigenic role. Here, we showed that the DUS4L-BCAP29 fusion transcript exists in a variety of normal tissues. It is also present in noncancerous epithelial and fibroblast cell lines. Quantitatively, the fusion transcript has a similar expression level in noncancerous gastric and prostate cell lines and tissues to its expression in cancerous cell lines and tissues. Previously, a loss-of-function approach was used to report a probable functionality for this fusion. However, this approach is not sufficient to prove such functionality. Alternatively, a gain-of-function approach showed that overexpression of DUS4L-BCAP29 promotes cell growth and motility, even in noncancerous cell lines. Finally, we provide further evidence that the fusion transcript is a product of cis-splicing between adjacent genes. In summary, we believe that in contrast to traditional gene fusions, DUS4L-BCAP29 cannot be used as a cancer biomarker. Instead, it is a fusion transcript that exists in normal physiology and its progrowth effect is not unique to cancer situations.


Assuntos
Fusão Gênica , Proteínas de Membrana/genética , Oxirredutases/genética , RNA/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Especificidade de Órgãos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
10.
Genes Dis ; 6(4): 385-390, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832518

RESUMO

Gene fusions are appreciated as ideal cancer biomarkers and therapeutic targets. Chimeric RNAs are traditionally thought to be products of gene fusions, and thus, also cancer-specific. Recent research has demonstrated that chimeric RNAs can be generated by intergenic splicing in the absence of gene fusion, and such chimeric RNAs are also found in normal physiology. These new findings challenge the traditional theory of chimeric RNAs exclusivity to cancer, and complicates use of chimeric RNAs in cancer detection. Here, we provide an overview of gene fusions and chimeric RNAs, and emphasize their differences. We note that gene fusions are able to generate chimeric RNAs in accordance with the central dogma of biology, and that chimeric RNAs may also be able to influence the generation of the gene fusions per the "horse before the cart" hypothesis. We further expand upon the "horse before the cart" hypothesis, summarizing current evidence in support of the theory and exploring its potential impact on the field.

11.
Genes (Basel) ; 9(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337901

RESUMO

Tens of thousands of chimeric RNAs, i.e., RNAs with sequences of two genes, have been identified in human cells. Most of them are formed by two neighboring genes on the same chromosome and are considered to be derived via transcriptional readthrough, but a true readthrough event still awaits more evidence and trans-splicing that joins two transcripts together remains as a possible mechanism. We regard those genomic loci that are transcriptionally read through as unannotated genes, because their transcriptional and posttranscriptional regulations are the same as those of already-annotated genes, including fusion genes formed due to genetic alterations. Therefore, readthrough RNAs and fusion-gene-derived RNAs are not chimeras. Only those two-gene RNAs formed at the RNA level, likely via trans-splicing, without corresponding genes as genomic parents, should be regarded as authentic chimeric RNAs. However, since in human cells, procedural and mechanistic details of trans-splicing have never been disclosed, we doubt the existence of trans-splicing. Therefore, there are probably no authentic chimeras in humans, after readthrough and fusion-gene derived RNAs are all put back into the group of ordinary RNAs. Therefore, it should be further determined whether in human cells all two-neighboring-gene RNAs are derived from transcriptional readthrough and whether trans-splicing truly exists.

12.
Genes (Basel) ; 8(12)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240691

RESUMO

Chimeric RNAs have been recognized as a phenomenon not unique to cancer cells. They also exist in normal physiology. Aging is often characterized by deregulation of molecular and cellular mechanisms, including loss of heterochromatin, increased transcriptional noise, less tight control on alternative splicing, and more stress-induced changes. It is thus assumed that chimeric RNAs are more abundant in older people. In this study, we conducted a preliminary investigation to identify any chimeric RNAs with age-based trends in their expression levels in blood samples. A chimeric RNA candidate list generated by bioinformatic analysis indicated the possibility of both negative and positive trends in the expression of chimeric RNAs. Out of this candidate list, five novel chimeric RNAs were successfully amplified in multiple blood samples and then sequenced. Although primary smaller sample sizes displayed some weak trends with respect to age, analysis of quantitative PCR data from larger sample sizes showed essentially no relationship between expression levels and age. Altogether, these results indicate that, contradictory to the common assumption, chimeric RNAs as a group are not all higher in older individuals and that placing chimeric RNAs in the context of aging will be a much more complex task than initially anticipated.

13.
Commun Integr Biol ; 4(4): 454-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21966569

RESUMO

The divergent eukaryotic unicellular organism Giardia intestinalis is an intestinal parasite in humans and various animals. An analysis of a draft genome sequence suggested that G. intestinalis has a much simpler genome organization and gene repertoire than those of other model eukaryotic organisms (e.g., Arabidopsis and human). This general picture of the G. intestinalis genome seemingly agrees with the fact that only four spliceosomal (cis-spliced) introns have been identified in this organism to date. We have recently shown that G. intestinalis possesses a unique gene expression system incorporating spliceosome-mediated trans-splicing. Some protein-coding genes in G. intestinalis are split into multiple pieces in the genome and each gene fragment is independently transcribed. Two particular pre-mRNAs directly interact with each other by forming an intermolecular-stem structure and are then trans-spliced into a mature mRNA by spliceosomes. We believe that this trans-splicing secondarily arose from the system that excises canonical (cis-splicing) introns. Based on these findings, we suspect that similar phenomena-split genes and post-transcriptional assemblage of their transcripts via trans-splicing-may be prevalent in more distinct eukaryotic lineages than previously known, particularly in organisms possessing "intron-poor" genomes.

14.
Mem. Inst. Oswaldo Cruz ; 106(2): 130-138, Mar. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-583935

RESUMO

Several protozoan parasites exist in the Trypanosomatidae family, including various agents of human diseases. Multiple lines of evidence suggest that important differences are present between the translational and mRNA processing (trans splicing) systems of trypanosomatids and other eukaryotes. In this context, certain small complexes of RNA and protein, which are named small nuclear ribonucleoproteins (U snRNPs), have an essential role in pre-mRNA processing, mainly during splicing. Even though they are well defined in mammals, snRNPs are still not well characterized in trypanosomatids. This study shows that a U5-15K protein is highly conserved among various trypanosomatid species. Tandem affinity pull-down assays revealed that this protein interacts with a novel U5-102K protein, which suggests the presence of a sub-complex that is potentially involved in the assembly of U4/U6-U5 tri-snRNPs. Functional analyses showed that U5-15K is essential for cell viability and is somehow involved with the trans and cis splicing machinery. Similar tandem affinity experiments with a trypanonosomatid U5-Cwc21 protein led to the purification of four U5 snRNP specific proteins and a Sm core, suggesting U5-Cwc-21 participation in the 35S U5 snRNP particle. Of these proteins, U5-200K was molecularly characterized. U5-200K has conserved domains, such as the DEAD/DEAH box helicase and Sec63 domains and displays a strong interaction with U5 snRNA.


Assuntos
DNA de Protozoário , Precursores de RNA , Splicing de RNA , Trypanosoma , Sequência de Aminoácidos , Dados de Sequência Molecular
15.
Biophys Rev ; 3(4): 193-197, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28510047

RESUMO

Although spliceosomal introns are an abundant landmark in eukaryotic genomes, the nuclear genome of the divergent eukaryote Giardia intestinalis, the causative agent of giardiasis, has been considered as "intron-poor" with only five canonical (cis-spliced) introns. However, three research groups (including ours) have independently reported a novel class of spliceosomal introns in the G. intestinalis genome. Three protein-coding genes are split into pieces in the G. intestinalis genome, and each of the partial coding regions was independently transcribed into polyadenylated premature mRNAs (pre-mRNAs). The two pre-mRNAs directly interact with each other by an intermolecular-stem structure formed between their non-coding portions, and are then processed into mature mRNAs by spliceosome-mediated trans-splicing. Here, we summarize the recently published works on split introns ("splintrons") in the G. intestinalis genome, and then provide our speculation on the functional property of the Giardia spliceosomes based on the putative ratio of splintrons to canonical introns. Finally, we discuss a scenario for the transition from typical GT-AG boundaries to non-typical AT-AC boundaries in a particular splintron of Giardia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...